Researcher ID

VISUALIZAÇÕES NA SEMANA

sexta-feira, 14 de setembro de 2012

ESTUDOS ORIENTADOS

Os estudos orientados devem ser entregues no dia da prova, 28/09

ESTUDO ORIENTADO 1


1 – Diferencie mitose de meiose
2 – Discuta a importância da ocorrência de permutação
3 – Como é feita a determinação do sexo em nossa espécie

ESTUDO ORIENTADO 2
1 – Discuta a importância da classificação cromossômica
2 – Diferencie os principais tipos de anomalia cromossômica numérica
3 – Seria possível um rearranjo cromossômico estrutural não provocar consequências no fenótipo?

GENÉTICA - ODONTOLOGIA - ANOMALIAS CROMOSSÔMICAS

ANOMALIAS CROMOSSÔMICAS NUMÉRICAS

NÃO DISJUNÇÃO

Eventualmente um fenômeno de separação incorreta dos cromossomos ocorre durante a divisão de uma célula. Este erro de separação é chamado não disjunção. O fenômeno pode ocorrer tanto na mitose quanto na meiose.
Quando ocorre na meiose, a não disjunção leva à formação de gametas com número incorreto de cromossomos. Entretanto, há diferença na proporção de gametas anômalos formados dependendo do erro ocorrer na primeira divisão (meiose I ou divisão reducional) ou na segunda divisão (meiose II ou divisão equacional). Quando há erro na primeira divisão, 100% dos gametas gerados tem conteúdo cromossômico anormal (50% com cromossomos a mais e 50% com cromossomos a menos). Já se o erro ocorre na segunda divisão, 50% dos gametas dserão normais, mas os 50% remanescentes terão número incorreto de cromossmomos (25% com cromossomos a mais e 25% com cromossomos a menos).


A ocorrência de não disjunção mitótica leva a uma condição denominada mosaicismo cromossômico. Neste caso, como o erro ocorre em células somáticas, uma parte das células do organismo tem constituição cromossômica normal e outra parte fica com constituição cromossômica anormal. Assim,  do ponto de vista genético, diferentes populações celulares coexistem no mesmo organismo.


A não disjunção é a causa principal das anormalidades que envolvem o número dos cromossomos. 

ANOMALIAS CROMOSSÔMICAS NUMÉRICAS
As anomalias cromossômicas numéricas podem ser de dois tipos: as euploidias, nas quais há uma alteração envolvendo um conjunto cromossômico completo ou seu múltiplo (n, 2n, 3n, etc....) 


e as aneuploidias, nas quais o número de cromossomos envolvidos não alcança um conjunto cromossômico completo, ou seja, vai de 1 a (n-1) cromossomos, a mais ou a menos. O tipo mais comum de aneuploidia é a trissomia (presença de 3 cromossomos), mas podemos ter outras formas de variação, como a nulissomia, a monossomia e a tetrassomia


Em nossa espécie, a euploidia é incompatível com a sobrevida. Triploidia (3n) em natimortos e tetraploidia (4n) em molas já foram descritas. Já as aneuploidias possuem configurações genéticas viáveis, permitindo que inferências sejam feitas em relação à presença de cromossomos supra  (a mais) ou infra (a menos) numerários. Em termos gerais, poucas combinações genéticas com número de cromossomos alterado são viáveis, e, dentre estas, destacamos 3 anomalias que quenvolvem cromossomos autossômicos e 4 que envolvem cromossomos sexuais:
Autossômicas - ocorrem indistintamente em homens e mulheres
trissomia do 13, a síndrome de Patau
trissomia do 18, a síndrome de Edwards
trissomia do 21, a síndrome de Down (evite o termo "mongolismo")
Sexuais - ocorrem distintamente em homens e mulheres
femininas
trissomia do X, a síndrome do triplo X (evite o termo "síndrome da superfêmea")
monossomia do X, a síndrome de Turner
masculinas
dissomia do X, trissomia sexual, a síndrome de Klinefelter
dissomia do Y, trissomia sexual, a síndrome do duplo Y (evite o termo "síndrome do supermacho")

ANOMALIAS CROMOSSÔMICAS ESTRUTURAIS

Além dos distúrbios envolvendo a alteração do número dos cromossomos, temos também as anomalias que afetam a estrutura cromossômica como decorrência de quebras cromossômicas seguidas ou não de realocação de segmentos cromossômicos em regiões anormais.

Basicamente podemos categorizar estas ocorrências em quatro grupos:
1) deleções
neste tipo de anomalia estrutural, uma parte do cromossomo é perdida, resultando em monossomia para a região perdida. As deleções podem ser intersticiais, quando envolvem 2 pontos de quebra, com perda de um segmento interno e subsequente reunião da cromátide ou terminais, quando envolvem apenas um ponto de quebra, com perda de toda a extremidade do braço da cromátide.
2) duplicações
um segmento cromossômico é inserido em um homólogo, resultando na duplicação do segmento
3) inversões
nesta tipo de ocorrência, um segmento cromossômico é destacado e, após sofrer um giro de 180 graus, é reinserido (ficando com a orientação inversa)
4) translocação
quando há troca de segmentos entre cromossomos não homólogos, chamamos translocação recíproca. se a troca envolve um braço inteiro do cromossomo, ela é dita Robertsoniana.
formado a partir de um erro na segregação, apresenta perda de um dos braços e dusplicação do outro.

GENÉTICA - ODONTOLOGIA - CROMOSSOMOS

CROMOSSOMOS



Os cromossomos são as unidades básicas da hereditariedade. O estudo destas estruturas celulares responsáveis pela transmissão das características é denominado citogenética.  Estruturalmente, o cromossomo pode ser definido como uma unidade filamentosa de DNA altamente enovelada, que é observada durante o processo de divisão celular. Entretanto, o uso generalizado levou à associação do termo cromossomo ao material genético de uma célula.


O enovelamento característico dos cromossomos é decorrente da associação do filamento de DNA com proteínas, constituindo uma unidade estrutural denominada cromatina. A cromatina pode ser classificada em dois grupos gerais: i) a cromatina mais condensada, indisponível para transcrição dos genes, que é chamada heterocromatina e ii) a cromatina mais frouxamente enovelada, disponível para transcrição dos genes, denominada eucromatina. O empacotamento da cromatina é extremamente importante para a viabilidade da célula. Imagine que você fosse capaz de alinhar os 46 cromossomos que compõe o genoma nuclear humano. O filamento formado teria cerca de 1,8m! Isso mesmo, cerca de um metro e oitenta!
 
As proteínas que se associam ao DNA para compor a cromatina pertencem basicamente a dois grupos: i) as histonas, proteínas de caráter básico que são as responsáveis pelas etapas iniciais de condensação (enovelamento) do DNA e ii) as proteínas não-histonas, que pertencem a uma ampla variedade de famílias protéicas e são responsáveis pelas etapas posteriores de condensação e que culminam com o empacotamento máximo da cromatina, denominado cromossomo. O cromossomo é, então, o DNA na sua forma mais enovelada (e que se apresenta como uma molécula em forma de bastão com um comprimento cerca de 10.000 vezes menor que a molécula de DNA que o originou). 

Diversas etapas, inicialmente envolvendo os 5 tipos de histonas (H1, H2a, H2b, H3 e H4) devem ser cumpridas para que o enovelamento possa ser concretizado. A associação com unidades de quatro tipos de histonas em pares (2 unidades de cada um dos tipos H2a, H2b, H3 e H4), denominada octâmero de histonas, é o primeiro passo, formando o nucleossoma, uma estrutura que se assemelha a um colar de contas. A presença da histona H1 nos intervalos do nucleossoma forma o solenóide, que, por sua vez, é enovelado sobre si mesmo gerando uma fibra cromossômica. O empacotamento sequencial das fibras gera o cromossomo propriamente dito.



Podemos identificar uma série de elementos na organização estrutural de um cromossomo. Cada filamento constitui uma cromátide, que possui 2 extremidades denominadas telômeros. A cromátide é dividida por uma região mais condensada, denominada centrômero. O centrômero tem papel importante na separação dos cromossomos, pois é nesta região que se encontra o cinetocóro, complexo proteíco ao qual as proteínas do fuso de divisão se ligam.


O centrômero divide a cromátide em dois segmentos: o braço curto (referido como p) e o braço longo (referido como q). Dependendo da posição que o centrômero ocupa, podemos classificar os cromossomos em metacêntrico (centrômero na região central); sub-metacêntrico (centrômero deslocado para uma das extremidades, estabelecendo um braço que ocrresponde a cerca de 2/3 do cromossomo e outro correspondente a 1/3); acrocêntrico (centromero nitidamente deslocado para uma das extremidades) e telocêntrico (centrômero na região telomérica, fazendo com que o cromossomo apresente apenas 1 braço).

Em relação ao tamanho, originalmente os cromossomos foram divididos em 7 grupos (A a G), em ordem decrescente de tamanho:
- grupo A – cromossomos 1, 2 e 3
- grupo B – cromossomos 4 e 5
- grupo C – cromossomos 6 a 12 e X
- grupo D – cromossomos 13 a 15
- grupo E – cromossomos 16 a 18
- grupo F – cromossomos 19 e 20
- grupo G – cromossomos 21, 22 e Y
Com as técnicas de bandeamento, cada cromossomo pode ser identificado a partir de seu padrão de bandas. Estas técnicas consistem no tratamento de uma preparação de células rompidas que encontravam-se em processo de divisão, que são coradas e analisadas em microscópio. Com o bandeamento é possível identificar cada um dos cromossomos. A partir de então, os cromossomos autossômicos são numerados de 1 a 22 em ordem decrescente de tamanho. O par sexual é composto pelos cromossomos X e Y. Desta forma, a espécie humana apresenta 24 tipos de cromossomos diferentes: os 22 autosomos, e os sexuais X e Y (que apesar de comporem um par são diferentes entre si).

GENÉTICA - ODONTOLOGIA - MEIOSE

DIVISÃO CELULAR - MEIOSE
A meiose é uma estratégia de divisão que está relacionada a formação de gametas. Durante a meiose ocorre apenas uma duplicação do DNA associada a duas divisões celulares sucessivas. Assim, o produto da meiose é a formação de quatro células filhas que contém metade do material genético da célula mãe. A primeira divisão é reducional (reduz à metade o conteúdo genético da célula filha) e a segunda divisão é equacional (distribui o conteúdo reduzido às células filhas). A meiose é subdividida em Meiose I e Meiose II.
A Prófase I é a etapa na qual os cromossomos se espiralizam e, com a formação da tétrade meiótica, pode haver intercâmbio de material genético entre cromátides não irmãs. Este fenômeno de troca é conhecido como crossing over ou permutação.
A Prófase I é subdividida em: 
Leptóteno – cromossomos se apresentam finos e longos;
Zigóteno – ocorre o pareamento dos cromossomos homólogos (bivalentes), onde cada bivalente apresenta quatros filamentos compactados (cromátides) de DNA (tétrade meiótica). Há a sinapse e a formação do complexo sinaptonêmico;
Paquíteno – ocorre o crossing over e permuta gênica entre segmentos de cromátides homólogas, sendo o processo uma fonte de variabilidade genética;
Diplóteno – os cromossomos homólogos se separam;
Diacinese – o complexo sinaptonêmico é desfeito, os cromossomos estão espiralizados, membrana nuclear é vesiculada e os centríolos se organizam para formar o fuso de divisão.
Na Metáfase I os cromossomos são dispostos na placa equatorial para que na Anáfase I, os fusos migrem para polos opostos, carreando cromossomos homólogos inteiros. Na Telófase I os cromossomos atingem os polos, a membrana nuclear é refeita e a membrana celular é estrangulada, formando duas células filhas com duas cromátides de cada cromossomo.
  
Na segunda divisão, a meiose II, as etapas da Prófase II e Metáfase II são semelhantes aos processos que ocorrem na mitose. Na Anáfase II os fusos de divisão se contraem e carreiam as cromátides irmãs para polos opostos. Na Telófase II as cromátides atingem os polos opostos, há reconstituição da membrana nuclear e, finalmente, o estrangulamento da membrana celular, formando quatro células filhas,  cada uma com uma cromátide de cada cromossomo da célula mãe.

Nos homens, o processo de formação dos gametas é denominado espermatogênese, sendo formados quatro espermatozóides para cada espermatogônia que entra em meiose.
Nas mulheres, o processo é denominado ovogênese e tem como característica a formação de um óvulo e três corpúsculos polares para cada ovogônia que entra em divisão.
links com animações:

GENÉTICA - ODONTOLOGIA - MITOSE

Durante a etapa de divisão celular, dois fenômenos importantes ocorrem: a cariocinese, ou divisão do material genético e a citocinese, ou divisão do conteúdo citoplasmático. Para fins didáticos, o processo de mitose foi subdividido em etapas, a saber: 1 - Prófase; 2 - Metáfase; 3 - Anáfase e 4 - Telófase. Aguns autores, ainda, dividem a Metáfase em ProMetáfase e Metáfase propriamente dita. Entretanto, o mais importante é que possamos compreender os eventos que ocorrem no processo de divisão, lembrando sempre que se trata de um evento contínuo.


Na prófase, o material genético é condensado, constituindo os cromossomos. Nas células eucariontes, o DNA ocorre em associação a proteínas (que discutiremos na aula de cromossomos), constituindo a cromatina.A membrana nuclear é vesiculada e ocorre formação do fuso de divisão, a partir da migração dos centríolos para os polos opostos da célula, formando uma "rede" de microtúbulos aos quais os cromossomos se ligarão (Figura 1, I, II e IIII). Na metáfase, os cromossomos ligados às fibras do fuso de divisão são alinhados na porção mediana da célula (placa equatorial) (Figura 1 - IV). Na anáfase os cromossomos (que foram duplicados na fase S do ciclo celular, sendo constituídos de duas cromátides ligadas pelo centrômero) são separados (cariocinese), a partir da despolimerização dos microtúbulos (Figura 1- V e VI). Na telófase, os cromossomos já foram separados e há restituição da membrana nuclear. Coclui-se a divisão, com a citocinese, que corresponde à divisão do conteúdo citoplasmático (Figura 1 - VII e VIII).


 
Figura 1: Representação esquemática da mitose




ANIMAÇÕES: